суббота, 30 октября 2021 г.

Cpp, CDF, erfx, Stackoverflow

 Cpp, CDF, erfx, Stackoverflow

https://en.cppreference.com/w/cpp/numeric/math/erfc

#include <iostream>

#include <cmath>

#include <iomanip>

double normalCDF(double x) // Phi(-∞, x) aka N(x)

{

    return std::erfc(-x/std::sqrt(2))/2;

}

int main()

{

    std::cout << "normal cumulative distribution function:\n"

              << std::fixed << std::setprecision(2);

    for(double n=0; n<1; n+=0.1)

        std::cout << "normalCDF(" << n << ") " << 100*normalCDF(n) << "%\n";

 

    std::cout << "special values:\n"

              << "erfc(-Inf) = " << std::erfc(-INFINITY) << '\n'

              << "erfc(Inf) = " << std::erfc(INFINITY) << '\n';

} 

http://poivs.tsput.ru/ru/Math/Functions/SpecialFunctions/ErrorFunction

----------------------------------------------------------------------------------------------------------

Stackoverflow

-----------------------------------------------------------------------------------------------------------------------

https://stackoverflow.com/questions/2328258/cumulative-normal-distribution-function-in-c-c

https://en.wikipedia.org/wiki/Error_function

https://en.m.wikipedia.org/wiki/Normal_distribution

---------------------------------------------------------------------------------------------------------------------

Theres is no straight function. But since the gaussian error function and its complementary function is related to the normal cumulative distribution function (see here, or here) we can use the implemented c-function erfc (complementary error function):

double normalCDF(double value)
{
   return 0.5 * erfc(-value * M_SQRT1_2);
}

Which considers the relation of erfc(x) = 1-erf(x) with M_SQRT1_2 = √0,5.

I use it for statistical calculations and it works great. No need for using coefficients.


------------------------------------------------------------------------------------------------

#ifndef Pi 
#define Pi 3.141592653589793238462643 
#endif 

double cnd_manual(double x)
{
  double L, K, w ;
  /* constants */
  double const a1 = 0.31938153, a2 = -0.356563782, a3 = 1.781477937;
  double const a4 = -1.821255978, a5 = 1.330274429;

  L = fabs(x);
  K = 1.0 / (1.0 + 0.2316419 * L);
  w = 1.0 - 1.0 / sqrt(2 * Pi) * exp(-L *L / 2) * (a1 * K + a2 * K *K + a3 * pow(K,3) + a4 * pow(K,4) + a5 * pow(K,5));

  if (x < 0 ){
    w= 1.0 - w;
  }
  return w;
}
----------------------------------------------------------------------------------------------------------------------------------
double
phi(double x)
{
  static const double RT2PI = sqrt(4.0*acos(0.0));

  static const double SPLIT = 7.07106781186547;

  static const double N0 = 220.206867912376;
  static const double N1 = 221.213596169931;
  static const double N2 = 112.079291497871;
  static const double N3 = 33.912866078383;
  static const double N4 = 6.37396220353165;
  static const double N5 = 0.700383064443688;
  static const double N6 = 3.52624965998911e-02;
  static const double M0 = 440.413735824752;
  static const double M1 = 793.826512519948;
  static const double M2 = 637.333633378831;
  static const double M3 = 296.564248779674;
  static const double M4 = 86.7807322029461;
  static const double M5 = 16.064177579207;
  static const double M6 = 1.75566716318264;
  static const double M7 = 8.83883476483184e-02;

  const double z = fabs(x);
  double c = 0.0;

  if(z<=37.0)
  {
    const double e = exp(-z*z/2.0);
    if(z<SPLIT)
    {
      const double n = (((((N6*z + N5)*z + N4)*z + N3)*z + N2)*z + N1)*z + N0;
      const double d = ((((((M7*z + M6)*z + M5)*z + M4)*z + M3)*z + M2)*z + M1)*z + M0;
      c = e*n/d;
    }
    else
    {
      const double f = z + 1.0/(z + 2.0/(z + 3.0/(z + 4.0/(z + 13.0/20.0))));
      c = e/(RT2PI*f);
    }
  }
  return x<=0.0 ? c : 1-c;
}
-------------------------------------------------------------------------------------------------------------------------
static double CND(double d)
{
    const double       A1 = 0.31938153;
    const double       A2 = -0.356563782;
    const double       A3 = 1.781477937;
    const double       A4 = -1.821255978;
    const double       A5 = 1.330274429;
    const double RSQRT2PI = 0.39894228040143267793994605993438;

    double
    K = 1.0 / (1.0 + 0.2316419 * fabs(d));

    double
    cnd = RSQRT2PI * exp(- 0.5 * d * d) *
          (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));

    if (d > 0)
        cnd = 1.0 - cnd;

    return cnd;
}

--------------------------------------------------------------------------------------------------------


john cook

#include <cmath>

double phi(double x)
{
    // constants
    double a1 =  0.254829592;
    double a2 = -0.284496736;
    double a3 =  1.421413741;
    double a4 = -1.453152027;
    double a5 =  1.061405429;
    double p  =  0.3275911;

    // Save the sign of x
    int sign = 1;
    if (x < 0)
        sign = -1;
    x = fabs(x)/sqrt(2.0);

    // A&S formula 7.1.26
    double t = 1.0/(1.0 + p*x);
    double y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x);

    return 0.5*(1.0 + sign*y);
}

void testPhi()
{
    // Select a few input values
    double x[] = 
    {
        -3, 
        -1, 
        0.0, 
        0.5, 
        2.1 
    };

    // Output computed by Mathematica
    // y = Phi[x]
    double y[] = 
    { 
        0.00134989803163, 
        0.158655253931, 
        0.5, 
        0.691462461274, 
        0.982135579437 
    };

        int numTests = sizeof(x)/sizeof(double);

    double maxError = 0.0;
    for (int i = 0; i < numTests; ++i)
    {
        double error = fabs(y[i] - phi(x[i]));
        if (error > maxError)
            maxError = error;
    }

        std::cout << "Maximum error: " << maxError << "\n";
}