воскресенье, 9 апреля 2017 г.

Portf Optimization

https://www.mathworks.com/help/finance/examples/portfolio-optimization-examples-1.html

% https://www.mathworks.com/help/finance/examples/portfolio-optimization-examples-1.html

%% Clear
clc;
clear all;
close all;

%% Set up the Data

load BlueChipStockMoments

mret = MarketMean;
mrsk = sqrt(MarketVar);
cret = CashMean;
crsk = sqrt(CashVar);


%% Create a Portfolio Object

p = Portfolio('AssetList', AssetList, 'RiskFreeRate', CashMean);
p = setAssetMoments(p, AssetMean, AssetCovar);

p = setInitPort(p, 1/p.NumAssets);
[ersk, eret] = estimatePortMoments(p, p.InitPort);

clf;
portfolioexamples_plot('Asset Risks and Returns', ...
{'scatter', mrsk, mret, {'Market'}}, ...
{'scatter', crsk, cret, {'Cash'}}, ...
{'scatter', ersk, eret, {'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});


%% Set up a Portfolio Optimization Problem

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p, 20);
[prsk, pret] = estimatePortMoments(p, pwgt);

%% Plot efficient frontier

clf;
portfolioexamples_plot('Efficient Frontier', ...
{'line', prsk, pret}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

%% Illustrate the Tangent Line to the Efficient Frontier
q = setBudget(p, 0, 1);

qwgt = estimateFrontier(q, 20);
[qrsk, qret] = estimatePortMoments(q, qwgt);

%% Plot efficient frontier with tangent line (0 to 1 cash)

clf;
portfolioexamples_plot('Efficient Frontier with Tangent Line', ...
{'line', prsk, pret}, ...
{'line', qrsk, qret, [], [], 1}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

%%  Obtain Range of Risks and Returns

[rsk, ret] = estimatePortMoments(p, estimateFrontierLimits(p));

display(rsk);
display(ret);

%% Find a Portfolio with a Targeted Return and Targeted Risk

TargetReturn = 0.20;            % input target annualized return and risk here
TargetRisk = 0.15;

% Obtain portfolios with targeted return and risk

awgt = estimateFrontierByReturn(p, TargetReturn/12);
[arsk, aret] = estimatePortMoments(p, awgt);

bwgt = estimateFrontierByRisk(p, TargetRisk/sqrt(12));
[brsk, bret] = estimatePortMoments(p, bwgt);

% Plot efficient frontier with targeted portfolios

clf;
portfolioexamples_plot('Efficient Frontier with Targeted Portfolios', ...
{'line', prsk, pret}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
{'scatter', arsk, aret, {sprintf('%g%% Return',100*TargetReturn)}}, ...
{'scatter', brsk, bret, {sprintf('%g%% Risk',100*TargetRisk)}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

%% Blotters

aBlotter = dataset({100*awgt(awgt > 0),'Weight'}, 'obsnames', p.AssetList(awgt > 0));

displayPortfolio(sprintf('Portfolio with %g%% Target Return', 100*TargetReturn), aBlotter, false);

bBlotter = dataset({100*bwgt(bwgt > 0),'Weight'}, 'obsnames', p.AssetList(bwgt > 0));

displayPortfolio(sprintf('Portfolio with %g%% Target Risk', 100*TargetRisk), bBlotter, false);

%% Transactions Costs
BuyCost = 0.0020;
SellCost = 0.0020;

q = setCosts(p, BuyCost, SellCost);

qwgt = estimateFrontier(q, 20);
[qrsk, qret] = estimatePortMoments(q, qwgt);

% Plot efficient frontiers with gross and net returns

clf;
portfolioexamples_plot('Efficient Frontier with and without Transaction Costs', ...
{'line', prsk, pret, {'Gross'}, ':b'}, ...
{'line', qrsk, qret, {'Net'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

%% Turnover Constraint

BuyCost = 0.0020;
SellCost = 0.0020;
Turnover = 0.2;

q = setCosts(p, BuyCost, SellCost);
q = setTurnover(q, Turnover);

[qwgt, qbuy, qsell] = estimateFrontier(q, 20);
[qrsk, qret] = estimatePortMoments(q, qwgt);

% Plot efficient frontier with turnover constraint

clf;
portfolioexamples_plot('Efficient Frontier with Turnover Constraint', ...
{'line', prsk, pret, {'Unconstrained'}, ':b'}, ...
{'line', qrsk, qret, {sprintf('%g%% Turnover', 100*Turnover)}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

displaySumOfTransactions(Turnover, qbuy, qsell)

%% Tracking-Error Constraint

ii = [15, 16, 20, 21, 23, 25, 27, 29, 30]; % indexes of assets to include in tracking portfolio

TrackingError = 0.05/sqrt(12);
TrackingPort = zeros(30, 1);
TrackingPort(ii) = 1;
TrackingPort = (1/sum(TrackingPort))*TrackingPort;

% ERROR steTracckingError
q = setTrackingError(p, TrackingError, TrackingPort);

qwgt = estimateFrontier(q, 20);
[qrsk, qret] = estimatePortMoments(q, qwgt);

[trsk, tret] = estimatePortMoments(q, TrackingPort);

% Plot efficient frontier with tracking-error constraint

clf;
portfolioexamples_plot('Efficient Frontier with 5% Tracking-Error Constraint', ...
{'line', prsk, pret, {'Unconstrained'}, ':b'}, ...
{'line', qrsk, qret, {'Tracking'}}, ...
{'scatter', [mrsk, crsk], [mret, cret], {'Market', 'Cash'}}, ...
{'scatter', trsk, tret, {'Tracking'}, 'r'});

%% Combined Turnover and Tracking-Error Constraints

Turnover = 0.3;
InitPort = (1/q.NumAssets)*ones(q.NumAssets, 1);

ii = [15, 16, 20, 21, 23, 25, 27, 29, 30]; % indexes of assets to include in tracking portfolio

TrackingError = 0.05/sqrt(12);
TrackingPort = zeros(30, 1);
TrackingPort(ii) = 1;
TrackingPort = (1/sum(TrackingPort))*TrackingPort;

q = setTurnover(q, Turnover, InitPort);

qwgt = estimateFrontier(q, 20);
[qrsk, qret] = estimatePortMoments(q, qwgt);

[trsk, tret] = estimatePortMoments(q, TrackingPort);
[ersk, eret] = estimatePortMoments(q, InitPort);

% Plot efficient frontier with combined turnover and tracking-error constraint

clf;
portfolioexamples_plot('Efficient Frontier with Turnover and Tracking-Error Constraint', ...
{'line', prsk, pret, {'Unconstrained'}, ':b'}, ...
{'line', qrsk, qret, {'Turnover & Tracking'}}, ...
{'scatter', [mrsk, crsk], [mret, cret], {'Market', 'Cash'}}, ...
{'scatter', trsk, tret, {'Tracking'}, 'r'}, ...
{'scatter', ersk, eret, {'Initial'}, 'b'});


%% Maximize the Sharpe Ratio
p = setInitPort(p, 0);

swgt = estimateMaxSharpeRatio(p);
[srsk, sret] = estimatePortMoments(p, swgt);

% Plot efficient frontier with portfolio that attains maximum Sharpe ratio

clf;
portfolioexamples_plot('Efficient Frontier with Maximum Sharpe Ratio Portfolio', ...
{'line', prsk, pret}, ...
{'scatter', srsk, sret, {'Sharpe'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio

Blotter = dataset({100*swgt(swgt > 0),'Weight'}, 'obsnames', AssetList(swgt > 0));

displayPortfolio('Portfolio with Maximum Sharpe Ratio', Blotter, false);

%% Confirm that Maximum Sharpe Ratio is a Maximum

psratio = (pret - p.RiskFreeRate) ./ prsk;
ssratio = (sret - p.RiskFreeRate) / srsk;

clf;
subplot(2,1,1);
plot(prsk, pret, 'LineWidth', 2);
hold on
scatter(srsk, sret, 'g', 'filled');
title('\bfEfficient Frontier');
xlabel('Portfolio Risk');
ylabel('Portfolio Return');
hold off

subplot(2,1,2);
plot(prsk, psratio, 'LineWidth', 2);
hold on
scatter(srsk, ssratio, 'g', 'filled');
title('\bfSharpe Ratio');
xlabel('Portfolio Risk');
ylabel('Sharpe Ratio');
hold off

%% Illustrate that Sharpe is the Tangent Portfolio

q = setBudget(p, 0, 1);

qwgt = estimateFrontier(q, 20);
[qrsk, qret] = estimatePortMoments(q, qwgt);

% Plot that shows Sharpe ratio portfolio is the tangency portfolio

clf;
portfolioexamples_plot('Efficient Frontier with Maximum Sharpe Ratio Portfolio', ...
{'line', prsk, pret}, ...
{'line', qrsk, qret, [], [], 1}, ...
{'scatter', srsk, sret, {'Sharpe'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});


%% Dollar-Neutral Hedge-Fund Structure 130 -30
Exposure = 1;

q = setBounds(p, -Exposure, Exposure);
q = setBudget(q, 0, 0);
q = setOneWayTurnover(q, Exposure, Exposure, 0);

[qwgt, qlong, qshort] = estimateFrontier(q, 20);
[qrsk, qret] = estimatePortMoments(q, qwgt);

[qswgt, qslong, qsshort] = estimateMaxSharpeRatio(q);
[qsrsk, qsret] = estimatePortMoments(q, qswgt);

% Plot efficient frontier for a dollar-neutral fund structure with tangency portfolio

clf;
portfolioexamples_plot('Efficient Frontier with Dollar-Neutral Portfolio', ...
{'line', prsk, pret, {'Standard'}, 'b:'}, ...
{'line', qrsk, qret, {'Dollar-Neutral'}, 'b'}, ...
{'scatter', qsrsk, qsret, {'Sharpe'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio

Blotter = dataset({100*qswgt(abs(qswgt) > 1.0e-4), 'Weight'}, ...
{100*qslong(abs(qswgt) > 1.0e-4), 'Long'}, ...
{100*qsshort(abs(qswgt) > 1.0e-4), 'Short'}, ...
'obsnames', AssetList(abs(qswgt) > 1.0e-4));

displayPortfolio('Dollar-Neutral Portfolio with Maximum Sharpe Ratio', Blotter, true, 'Dollar-Neutral');


%% 130/30 Fund Structure

Leverage = 0.3;

q = setBounds(p, -Leverage, 1 + Leverage);
q = setBudget(q, 1, 1);
q = setOneWayTurnover(q, 1 + Leverage, Leverage);

[qwgt, qbuy, qsell] = estimateFrontier(q, 20);
[qrsk, qret] = estimatePortMoments(q, qwgt);

[qswgt, qslong, qsshort] = estimateMaxSharpeRatio(q);
[qsrsk, qsret] = estimatePortMoments(q, qswgt);

% Plot efficient frontier for a 130-30 fund structure with tangency portfolio

clf;
portfolioexamples_plot(sprintf('Efficient Frontier with %g-%g Portfolio', ...
    100*(1 + Leverage),100*Leverage), ...
{'line', prsk, pret, {'Standard'}, 'b:'}, ...
{'line', qrsk, qret, {'130-30'}, 'b'}, ...
{'scatter', qsrsk, qsret, {'Sharpe'}}, ...
{'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
{'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio

Blotter = dataset({100*qswgt(abs(qswgt) > 1.0e-4), 'Weight'}, ...
{100*qslong(abs(qswgt) > 1.0e-4), 'Long'}, ...
{100*qsshort(abs(qswgt) > 1.0e-4), 'Short'}, ...
'obsnames', AssetList(abs(qswgt) > 1.0e-4));

displayPortfolio(sprintf('%g-%g Portfolio with Maximum Sharpe Ratio', 100*(1 + Leverage), 100*Leverage), Blotter, true, sprintf('%g-%g', 100*(1 + Leverage), 100*Leverage));

Mean Return

пятница, 31 марта 2017 г.

Classification Examples

Get Started with Statistics and Machine Learning Toolbox

Getting Started with Statistics and Machine Learning Toolbox

https://www.mathworks.com/help/stats/getting-started-12.html

Machine Learning

Machine Learning for Predictive Modelling

Machine Learnings Examples

https://www.mathworks.com/products/statistics.html

Examples Machine Learning with MATLAB

https://www.mathworks.com/campaigns/products/offer/machine-learning-with-matlab-conf.html?elqsid=1490946484814&potential_use=Home

Machine Learning Made Easy

https://www.mathworks.com/videos/machine-learning-with-matlab-100694.html?s_tid=conf_addres_DA_eb

Signal Processing and Machine Learning Techniques for Sensor Data Analytics

https://www.mathworks.com/videos/signal-processing-and-machine-learning-techniques-for-sensor-data-analytics-107549.html?s_tid=conf_addres_DA_eb

Supervised Learning Workflow and Algorithms

https://www.mathworks.com/help/stats/supervised-learning-machine-learning-workflow-and-algorithms.html?s_tid=conf_addres_DA_eb

Data-Driven Insights with MATLAB Analytics: An Energy Load Forecasting Case Study

https://www.mathworks.com/company/newsletters/articles/data-driven-insights-with-matlab-analytics-an-energy-load-forecasting-case-study.html?s_tid=conf_addres_DA_eb

MACHINE LEARNINGS Examples

https://www.mathworks.com/solutions/machine-learning/examples.html?s_tid=conf_addres_DA_eb

Classification Learner

https://www.mathworks.com/products/statistics/classification-learner.html?s_tid=conf_addres_DA_eb




Financial App Examples

MachineLearning

Finance Toolbox

1.























2.


четверг, 30 марта 2017 г.

Financial Toolbox Getting Started

Finance App Examples

Обработка изображений

Computer vision

Deep Learning ML, Caffe,

ML Parallel

Параллельные вычисления при моделировании с серией параметров

http://matlab.ru/videos/Parallel%27nye-vychisleniya-pri-modelirovanii-s-seriej-parametrov

www.matlab.ru

среда, 29 марта 2017 г.

ML + VS

Интеграция MATLAB с Microsoft Visual Studio

http://matlab.ru/videos/integraciya-matlab-s-microsoft-visual-studio

ML Parameters Estimation

Онлайн оценка параметров модели Online Parameter Estimation

http://matlab.ru/videos/onlajn-ocenka-parametrov-modeli-online-parameter-estimation

ML Big Data

ML Production Server

вторник, 28 марта 2017 г.

Simple graphics examples for Matlab 3D

1. Elefant
[x,y,z] = meshgrid(-2:0.1:2);
F=(x.^2 + y.^2 + z.^2) - 3;
isosurface(x,y,z,F,0);
 F=(x.^3 + y.^3 + z.^3) -2;
 isosurface(x,y,z,F,0);
 axis auto
 axis([-3, +3 , -3, +3, -3, +3]);

2. 
[x,y,z] = meshgrid(-2:0.1:2); 
 F=x.^2 + y.^2 + z.^2 -3;
 isosurface(x,y,z,F,0);
 F=x.^2 + y.^3 + z.^2 -3;
 isosurface(x,y,z,F,0);
 F=x.^2 + y.^3 + z.^2 +3;
 isosurface(x,y,z,F,0); 
 axis([-2.5, +2.5 , -2.5, +2.5,-2.5, +2.5]);

 % axis auto

3.
clc
[x,y,z] = meshgrid(-2:0.1:2);  
F=x.^4 + y.^4 + z.^4 - (x.^2 + y.^2 + z.^2); 
% surface(x,y,z,F,0)
% isosurface(x,y,z,F,0)
 hpatch = patch(isosurface(x,y,z,F,0)); 
 isonormals(x,y,z,F,hpatch); %посчитаем нормали для красоты
 set(hpatch,'FaceColor','r','EdgeColor','none'); %немного цвета для красоты

 camlight left; lighting phong; %немного света для красоты



Simple graphics examples for Matlab

1.
N = 50;

NgrStr = 6;
NgrColumn = 1;

y1 = randn(N,1);

stat.mean = mean(y);
stat.std = std(y);
stat.median = median(y);

y2 = filter([ 1 1]/2,1,y);

t = linspace(0, 0.01, N);

subplot(NgrStr,NgrColumn,1);

plot(t,y1);
grid on;

subplot(NgrStr,NgrColumn,2);

plot(t,y2);
grid on;

subplot(NgrStr,1,3);
plot(y,'DisplayName','y');hold on;plot(y2,'DisplayName','y2');hold off;
grid on;

subplot(NgrStr,NgrColumn,4);

plot(y1,y2);
grid on;

subplot(NgrStr,NgrColumn,5);
stem(y2-y1);
grid on;

subplot(NgrStr,NgrColumn,6);
hist(y2-y1);
grid on;

.Net Assembly from MatLab

.Net Assembly from MatLab

1.
NET.addAssembly('System.Speech');
ss = System.Speech.Synthesis.SpeechSynthesizer;
ss.Volume = 100;
Speak(ss,'You can use .NET Library in Matrix Laboratory');

2.
asmpath = 'D:\VC\1305\gs.trade\GS.Matlab\bin\Debug\';
asmname = 'GS.Matlab.dll';

asm = NET.addAssembly(fullfile(asmpath,asmname));

obj = GS.Matlab.MyGraph;

mlData = cell(obj.getNewData)
objArr = cell(obj.getObjectArray);

objNewDataArr = obj.getNewDataProp;

figure('Name',char(mlData{1}))
plot(double(mlData{2}(2)))

xlabel(char(mlData{2}(1)))

3.
% F:\Work\Math\Matlab\Net
% NetDocCell_01.m

R = 3;
C=1;
asmpath = 'D:\VC\1305\gs.trade\GS.Matlab\bin\Debug\';
asmname = 'GS.Matlab.dll';

asm = NET.addAssembly(fullfile(asmpath,asmname));

obj = GS.Matlab.MyGraph;

mlData = cell(obj.getNewData);
%objArr = cell(obj.getObjectArray);
objNewDataArr = obj.getNewDataProp;

figure('Name',char(mlData{1}));
subplot(R,C,1);
% figure('Name',char(mlData{1}));
plot(double(mlData{2}(2)));
xlabel(char(mlData{2}(1)));

subplot(R,C,2);
objArr = obj.getObjectArray();

doubles1 = double(objArr(1));
doubles2 = double(objArr(2));

plot([doubles1 doubles2]);

subplot(R,C,3);
objDouble = obj.getDoubleArray;
doubles = double(objDouble);

plot(doubles);

------------------------------------------------------------

.cs
D:\VC\1305\gs.trade\GS.MAtlab\
namespace GS.Matlab
{
    // Call Methods from .Net Assembly from Matlab 
    public class MyGraph
    {
        public Object[] getNewData()
            /*
         * Create a System.Object array to use in MATLAB examples.
         * Returns containerArr System.Object array containing:
         *  fLabel System.String object
         *  plotData System.Object array containing:
         *      xLabel System.String object
         *      doubleArr System.Double array
        */
        {
            String fLabel = "Figure Showing New Graph Data";
            Double[] doubleArr =
            {
                18, 32, 3.133, 44, -9.9, -13, 33.03
            };
            String xLabel = "X-Axis Label";
            Object[] plotData = {xLabel, doubleArr};
            Object[] containerArr = {fLabel, plotData};
            return containerArr;
        }

        public Object[] getNewDataProp {
        get
        {
            String fLabel = "Figure Showing New Graph Data";
            Double[] doubleArr =
            {
                18, 32, 3.133, 44, -9.9, -13, 33.03
            };
            String xLabel = "X-Axis Label";
            Object[] plotData = {xLabel, doubleArr};
            Object[] containerArr = {fLabel, plotData};
            return containerArr;
        }
        }

    public object[] getObjectArray()
        {
            var arr1 = new double[] {1, 2, 3, 4, 5};
            var arr2 = new double[] { 6, 7, 8, 9, 10 };
            return new object[] {arr1, arr2};
        }
        public double[] getDoubleArray()
        {
            return new double[] { 1, 2, 3, 4, 5 };
        }

        public object[] getObjectArrayProp => new object[]
        {
            new double[] {1,2,3},
            new double[] {4,5,6,7,8,9}
        };
        public double[] getDoubleArrayProp => new double[] { 1, 2, 3, 4, 5 };
    }

}

MCR MPS

воскресенье, 26 марта 2017 г.

Track

R=2;C=2;

vz = 10; % velocity constant
a = -32; % acceleration constant

subplot(R,C,1);

t = 0:.1:1;
z = vz*t;
% z = vz*t + 1/2*a*t.^2;

vx = 2;
x = vx*t;
%x = vx*t + 1/2*a*t.^2;

vy = 3;
y = vy*t;
% y = vy*t + 1/2*a*t.^2;

u = gradient(x);
v = gradient(y);
w = gradient(z);
scale = 0;

quiver3(x,y,z,u,v,w,scale);
view([70,18]);

subplot(R,C,2)
% z = vz*t;
z = vz*t + 1/2*a*t.^2;

vx = 2;
x = vx*t;
% x = vx*t + 1/2*a*t.^2;

vy = 3;
y = vy*t;
% y = vy*t + 1/2*a*t.^2;

u = gradient(x);
v = gradient(y);
w = gradient(z);
scale = 0;

quiver3(x,y,z,u,v,w,scale);
view([70,18]);

subplot(R,C,3)
% z = vz*t;
z = vz*t + 1/2*a*t.^2;

vx = 2;
% x = vx*t;
x = vx*t + 1/2*a*t.^2;

vy = 3;
y = vy*t;
% y = vy*t + 1/2*a*t.^2;

u = gradient(x);
v = gradient(y);
w = gradient(z);
scale = 0;

quiver3(x,y,z,u,v,w,scale);
view([70,18]);

subplot(R,C,4)
% z = vz*t;
z = vz*t + 1/2*a*t.^2;

vx = 2;
% x = vx*t;
x = vx*t + 1/2*a*t.^2;

vy = 3;
%y = vy*t;
y = vy*t + 1/2*a*t.^2;

u = gradient(x);
v = gradient(y);
w = gradient(z);
scale = 0;

quiver3(x,y,z,u,v,w,scale);
view([70,18]);

Combine Stem and Line

x = linspace(0,2*pi,60);
a = sin(x);
b = cos(x);
stem(x,a+b);

hold on
plot(x,a)
plot(x,b)
hold off

legend('a+b','a = sin(x)','b = cos(x)')
xlabel('Time in \musecs')
ylabel('Magnitude')
title('Linear Combination of Two Functions');

Include Loop Variable Value in Graph Title


x = linspace(0,10,100);
for k = 1:4
subplot(2,2,k);
yk = sin(k*x);
plot(x,yk)
title(['y = sin(' num2str(k) 'x)'])
end

Legend Mean Value + Text Signs

R=5;C=1;
dat = rand(50,1);

subplot(R,C,1);
plot(dat)
m = mean(dat);
ax = gca;
xlimits = ax.XLim;
h = line([xlimits(1),xlimits(2)],[m,m],'Color','k','LineStyle','--');

legend(h,'mean of data');

subplot(R,C,2);

g1 = hggroup;
g2 = hggroup;
t = linspace(0,2*pi,100);
plot(t,sin(t),'b','Parent',g1)
hold on
plot(t,sin(t+1/7),'b','Parent',g1)
plot(t,sin(t+2/7),'b','Parent',g1)
plot(t,sin(t+3/7),'b','Parent',g1)
plot(t,cos(t),'g','Parent',g2)
plot(t,cos(t+1/7),'g','Parent',g2)
plot(t,cos(t+2/7),'g','Parent',g2)
plot(t,cos(t+3/7),'g','Parent',g2)
hold off % reset hold state to off

legend([g1,g2],'sine','cosine')

subplot(R,C,3);
x = linspace(0,2*pi,100);
y1 = sin(x);
p1 = plot(x,y1,'DisplayName','sin(x)');
hold on
y2 = sin(x) + pi/2;
p2 = plot(x,y2,'DisplayName','sin(x) + \pi/2');
y3 = sin(x) + pi;
p3 = plot(x,y3,'DisplayName','sin(x) + \pi');
hold off

legend([p1 p2 p3])


subplot(R,C,4);

t = linspace(0,2*pi,50);
y = sin(t);
plot(t,y);

x1 = pi;
y1 = sin(pi);
str1 = '\leftarrow sin(\pi) = 0';
text(x1,y1,str1);

x2 = 3*pi/4;
y2 = sin(3*pi/4);
str2 = '\leftarrow sin(3\pi/4) = 0.71';
text(x2,y2,str2)
x3 = 5*pi/4;
y3 = sin(5*pi/4);
str3 = 'sin(5\pi/4) = -0.71 \rightarrow';

text(x3,y3,str3,'HorizontalAlignment','right');

subplot(R,C,5);

x = linspace(-3,3);
y = (x/5-x.^3).*exp(-2*x.^2);
plot(x,y);

indexmin = find(min(y) == y);
xmin = x(indexmin);
ymin = y(indexmin);
indexmax = find(max(y) == y);
xmax = x(indexmax);
ymax = y(indexmax);

strmin = ['Minimum = ',num2str(ymin)];
text(xmin,ymin,strmin,'HorizontalAlignment','left');
strmax = ['Maximum = ',num2str(ymax)];
text(xmax,ymax,strmax,'HorizontalAlignment','right');



Graph with Two y-Axes

1.
R = 5; C = 1;

subplot(R,C,1);
x = linspace(0,2*pi,25);

y1 = sin(x);
% y2 = 0.5*sin(x);
y2 = exp(-1/3*x).*sin(x);
plot(x,y1);
grid on

hold on

stem(x,y2);

hold off

subplot(R,C,2);

A = 1000;
a = 0.005;
b = 0.005;
t = 0:900;
z1 = A*exp(-a*t);
z2 = sin(b*t);

[ax,p1,p2] = plotyy(t,z1,t,z2,'semilogy','plot');
ylabel(ax(1),'Semilog Plot') % label left y-axis
ylabel(ax(2),'Linear Plot') % label right y-axis
xlabel(ax(2),'Time') % label x-axis

p1.LineStyle = '--';
p1.LineWidth = 2;
p2.LineWidth = 2;

grid(ax(1),'on')

пятница, 24 марта 2017 г.

Call .Net Methods from ML

1.
R = 3;
C=1;
asmpath = 'D:\VC\1305\gs.trade\GS.Matlab\bin\Debug\';
asmname = 'GS.Matlab.dll';

asm = NET.addAssembly(fullfile(asmpath,asmname));

obj = GS.Matlab.MyGraph;

mlData = cell(obj.getNewData);
%objArr = cell(obj.getObjectArray);
objNewDataArr = obj.getNewDataProp;

figure('Name',char(mlData{1}));
subplot(R,C,1);
% figure('Name',char(mlData{1}));
plot(double(mlData{2}(2)));
xlabel(char(mlData{2}(1)));

subplot(R,C,2);
objArr = obj.getObjectArray();

doubles1 = double(objArr(1));
doubles2 = double(objArr(2));

plot([doubles1 doubles2]);

subplot(R,C,3);
objDouble = obj.getDoubleArray;
doubles = double(objDouble); 
plot(doubles);

webread matlab and Net classes

webRead

https://www.mathworks.com/help/matlab/ref/webread.html

Convert .NET Arrays to Cell Arrays

https://www.mathworks.com/help/matlab/matlab_external/net-arrays-to-cell-arrays.html

Pass Cell Arrays of .NET Data

https://www.mathworks.com/help/matlab/matlab_external/tips-for-working-with-cell-arrays-of-net-data.html

Handle Data Returned from .NET Objects

https://www.mathworks.com/help/matlab/matlab_external/handling-net-data-in-matlab_bte9owt-1.html#bte9paq-1

Access a Simple .NET Class

https://www.mathworks.com/help/matlab/matlab_external/access-a-simple-net-class.html

Calling .NET Methods

matlab_external/calling-net-methods.html?s_tid=gn_loc_drop

Use .NET methods in MATLAB®, method signatures, arguments by reference, optional arguments

https://www.mathworks.com/help/matlab/methods-.html


понедельник, 27 февраля 2017 г.

MWArray Example

Multistep Neural Network Prediction example

Multistep Neural Network Prediction

https://www.mathworks.com/help/nnet/ug/multistep-neural-network-prediction.html


% Multistep Neural Network Prediction

% Set Up in Open-Loop Mode

[X,T] = maglev_dataset;
net = narxnet(1:2,1:2,10);
[x,xi,ai,t] = preparets(net,X,{},T);
net = train(net,x,t,xi,ai);
y = net(x,xi,ai);
view(net)

% Multistep Closed-Loop Prediction From Initial Conditions

% Close loop
netc = closeloop(net);
view(netc);

[x,xi,ai,t] = preparets(netc,X,{},T);
yc = netc(x,xi,ai);

plot(1:3999, cell2mat(t), 'b', 1: 3999, cell2mat(yc),'r');

% Multistep Closed-Loop Prediction Following Known Sequence

x1 = x(1:20);
t1 = t(1:20);
x2 = x(21:40);

% The open-loop neural network is then simulated on this data.

[x,xi,ai,t] = preparets(net,x1,{},t1);
[y1,xf,af] = net(x,xi,ai);

%Now the final input and layer states returned by the network are converted to closed-loop form along with the network.
% The final input states xf and layer states af of the open-loop network become the initial input states xi and layer states ai of the closed-loop network.

[netc,xi,ai] = closeloop(net,xf,af);

%Typically use preparets to define initial input and layer states. 
% Since these have already been obtained from the end of the open-loop simulation,
% you do not need preparets to continue with the 20 step predictions of the closed-loop network

[y2,xf,af] = netc(x2,xi,ai);

% Note that you can set x2 to different sequences of inputs to test different scenarios for however many time steps you would like to make predictions.
% For example, to predict the magnetic levitation system's behavior if 10 random inputs are used:

x2 = num2cell(rand(1,10));
[y2,xf,af] = netc(x2,xi,ai);

% Following Closed-Loop Simulation with Open-Loop Simulation
[~,xi,ai] = openloop(netc,xf,af);

% Now you can define continuations of the external input and open-loop
% feedback, and simulate the open-loop network 

x3 = num2cell(rand(2,10));
y3 = net(x3,xi,ai);

Data Generator function

%% Data generator function
function [X,Xtrain,Ytrain,fig] = data_generator()
% data generator
X = 0.01:.01:10;
f = abs(besselj(2,X*7).*asind(X/2) + (X.^1.95)) + 2;
fig = figure;
plot(X,f,'b-')
hold on
grid on
% available data points
Ytrain = f + 5*(rand(1,length(f))-.5);
Xtrain = X([181:450 601:830]);
Ytrain = Ytrain([181:450 601:830]);
plot(Xtrain,Ytrain,'kx')
xlabel('x')
ylabel('y')
ylim([0 100])
legend('original function','available data','location','northwest')

Simple Narx Example

1.
% Simple First Narx Net Example

load magdata
y = con2seq(y);
u = con2seq(u);

% y = Feedback Signal and Taget signal

sizey = size(y);
sizeu = size(u);

d1 = [1:2];
d2 = [1:2];

narx_net = narxnet(d1,d2,10);

narx_net.divideFcn = '';
narx_net.trainParam.min_grad = 1e-10;

[p,Pi,Ai,t] = preparets(narx_net, u, {}, y);

narx_net.view;

narx_net = train(narx_net,p,t,Pi);

% Simulation
yp = sim(narx_net, p, Pi);
e = cell2mat(yp)-cell2mat(t);
plot(e);

% closed loop

narx_net_closed = closeloop(narx_net);

view(narx_net_closed)

y1 = y(1700:2600);
u1 = u(1700:2600);
[p1,Pi1,Ai1,t1] = preparets(narx_net_closed,u1,{},y1);

yp1 = narx_net_closed(p1,Pi1,Ai1);
TS = size(t1,2);
plot(1:TS,cell2mat(t1),'b',1:TS,cell2mat(yp1),'r')


2. 
% Multiple External Variables in X cell two paramers

[X, T] = ph_dataset;

net = narxnet(10);

[x, xi,ai,t] = preparets(net,X,{},T);

net.view

net = train(net,x,t,xi,ai);

y=net(x,xi,ai);
e = gsubtract(t,y);

sz = size(t);

%plot(cell2mat(e));

plot(1:1991,cell2mat(t),'b',1:1991,cell2mat(y),'r');

воскресенье, 26 февраля 2017 г.

NN Generalization Overfitting, Normalization, Preparets

NARX Reffs

Design Time Series NARX Feedback Neural Networks

https://www.mathworks.com/help/nnet/ug/design-time-series-narx-feedback-neural-networks.html?s_tid=gn_loc_drop

Modeling and Prediction with NARX and Time-Delay Networks

https://www.mathworks.com/help/nnet/modeling-and-prediction-with-narx-and-time-delay-networks.html

Multistep Neural Network Prediction

https://www.mathworks.com/help/nnet/ug/multistep-neural-network-prediction.html

https://en.wikipedia.org/wiki/Nonlinear_autoregressive_exogenous_model

https://www.researchgate.net/post/Can_anyone_help_regarding_NARX_network_in_network_timeseries_analysis_tool

http://www.wseas.us/e-library/transactions/research/2008/27-464.pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1032.9079&rep=rep1&type=pdf


Improve Neural Network Generalization and Avoid Overfitting

https://www.mathworks.com/help/nnet/ug/improve-neural-network-generalization-and-avoid-overfitting.html


NARX

Design Time Series NARX Feedback Neural Networks

All the specific dynamic networks discussed so far have either been focused networks,
with the dynamics only at the input layer, or feedforward networks. The nonlinear
autoregressive network with exogenous inputs (NARX) is a recurrent dynamic network,
with feedback connections enclosing several layers of the network. The NARX model is
based on the linear ARX model, which is commonly used in time-series modeling.
The defining equation for the NARX model is
y(t) = f (y(t −1), y(t − 2), , y(t − ny ),u(t −1),u(t − 2), ,u(t − nu)) … …
where the next value of the dependent output signal y(t) is regressed on previous values
of the output signal and previous values of an independent (exogenous) input signal. You
can implement the NARX model by using a feedforward neural network to approximate
the function f. A diagram of the resulting network is shown below, where a two-layer
feedforward network is used for the approximation. This implementation also allows for a
vector ARX model, where the input and output can be multidimensional.
There are many applications for the NARX network. It can be used as a predictor, to
predict the next value of the input signal. It can also be used for nonlinear filtering, in
which the target output is a noise-free version of the input signal. The use of the NARX
network is shown in another important application, the modeling of nonlinear dynamic
systems.
Design Time Series NARX Feedback Neural Networks
3-23
Before showing the training of the NARX network, an important configuration that is
useful in training needs explanation. You can consider the output of the NARX network
to be an estimate of the output of some nonlinear dynamic system that you are trying
to model. The output is fed back to the input of the feedforward neural network as part
of the standard NARX architecture, as shown in the left figure below. Because the true
output is available during the training of the network, you could create a series-parallel
architecture (see [NaPa91]), in which the true output is used instead of feeding back the
estimated output, as shown in the right figure below. This has two advantages. The first
is that the input to the feedforward network is more accurate. The second is that the
resulting network has a purely feedforward architecture, and static backpropagation can
be used for training.
The following shows the use of the series-parallel architecture for training a NARX
network to model a dynamic system.
The example of the NARX network is the magnetic levitation system described beginning
in “Use the NARMA-L2 Controller Block” on page 4-18. The bottom graph in the
following figure shows the voltage applied to the electromagnet, and the top graph shows
the position of the permanent magnet. The data was collected at a sampling interval of
0.01 seconds to form two time series.
The goal is to develop a NARX model for this magnetic levitation system.
3 Dynamic Neural Networks
3-24
First, load the training data. Use tapped delay lines with two delays for both the input
and the output, so training begins with the third data point. There are two inputs to the
series-parallel network, the u(t) sequence and the y(t) sequence.
load magdata
y = con2seq(y);
u = con2seq(u);
Create the series-parallel NARX network using the function narxnet. Use 10 neurons in
the hidden layer and use trainlm for the training function, and then prepare the data
with preparets:
d1 = [1:2];
d2 = [1:2];
narx_net = narxnet(d1,d2,10);
narx_net.divideFcn = '';
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u,{},y);
(Notice that the y sequence is considered a feedback signal, which is an input that is
also an output (target). Later, when you close the loop, the appropriate output will be
connected to the appropriate input.) Now you are ready to train the network.
narx_net = train(narx_net,p,t,Pi);
Design Time Series NARX Feedback Neural Networks
3-25
You can now simulate the network and plot the resulting errors for the series-parallel
implementation.
yp = sim(narx_net,p,Pi);
e = cell2mat(yp)-cell2mat(t);
plot(e)
You can see that the errors are very small. However, because of the series-parallel
configuration, these are errors for only a one-step-ahead prediction. A more stringent test
would be to rearrange the network into the original parallel form (closed loop) and then
to perform an iterated prediction over many time steps. Now the parallel operation is
shown.
3 Dynamic Neural Networks
3-26
There is a toolbox function (closeloop) for converting NARX (and other) networks from
the series-parallel configuration (open loop), which is useful for training, to the parallel
configuration (closed loop), which is useful for multi-step-ahead prediction. The following
command illustrates how to convert the network that you just trained to parallel form:
narx_net_closed = closeloop(narx_net);
To see the differences between the two networks, you can use the view command:
view(narx_net)
view(narx_net_closed)
Design Time Series NARX Feedback Neural Networks
3-27
All of the training is done in open loop (also called series-parallel architecture), including
the validation and testing steps. The typical workflow is to fully create the network in
open loop, and only when it has been trained (which includes validation and testing
steps) is it transformed to closed loop for multistep-ahead prediction. Likewise, the R
values in the GUI are computed based on the open-loop training results.
You can now use the closed-loop (parallel) configuration to perform an iterated prediction
of 900 time steps. In this network you need to load the two initial inputs and the two
initial outputs as initial conditions. You can use the preparets function to prepare the
data. It will use the network structure to determine how to divide and shift the data
appropriately.
y1 = y(1700:2600);
u1 = u(1700:2600);
[p1,Pi1,Ai1,t1] = preparets(narx_net_closed,u1,{},y1);
yp1 = narx_net_closed(p1,Pi1,Ai1);
TS = size(t1,2);
plot(1:TS,cell2mat(t1),'b',1:TS,cell2mat(yp1),'r')
3 Dynamic Neural Networks
3-28
The figure illustrates the iterated prediction. The blue line is the actual position of the
magnet, and the red line is the position predicted by the NARX neural network. Even
though the network is predicting 900 time steps ahead, the prediction is very accurate.
In order for the parallel response (iterated prediction) to be accurate, it is important that
the network be trained so that the errors in the series-parallel configuration (one-stepahead
prediction) are very small.
You can also create a parallel (closed loop) NARX network, using the narxnet command
with the fourth input argument set to 'closed', and train that network directly.
Generally, the training takes longer, and the resulting performance is not as good as that
obtained with series-parallel training.
Design Time Series NARX Feedback Neural Networks
3-29
Each time a neural network is trained, can result in a different solution due to different
initial weight and bias values and different divisions of data into training, validation,
and test sets. As a result, different neural networks trained on the same problem can
give different outputs for the same input. To ensure that a neural network of good
accuracy has been found, retrain several times.
There are several other techniques for improving upon initial solutions if higher accuracy
is desired. For more information, see “Improve Neural Network Generalization and Avoid
Overfitting” on page 8-31.
Multiple External Variables
The maglev example showed how to model a time series with a single external input
value over time. But the NARX network will work for problems with multiple external
input elements and predict series with multiple elements. In these cases, the input and
target consist of row cell arrays representing time, but with each cell element being an Nby-
1 vector for the N elements of the input or target signal.
For example, here is a dataset which consists of 2-element external variables predicting a
1-element series.
[X,T] = ph_dataset;
The external inputs X are formatted as a row cell array of 2-element vectors, with each
vector representing acid and base solution flow. The targets represent the resulting pH of
the solution over time.
You can reformat your own multi-element series data from matrix form to neural
network time-series form with the function con2seq.
The process for training a network proceeds as it did above for the maglev problem.
net = narxnet(10);
[x,xi,ai,t] = preparets(net,X,{},T);
net = train(net,x,t,xi,ai);
y = net(x,xi,ai);
e = gsubtract(t,y);
To see examples of using NARX networks being applied in open-loop form, closedloop
form and open/closed-loop multistep prediction see “Multistep Neural Network
Prediction” on page 3-51.